Conditional Value-at-Risk for Random Immediate Reward Variables in Markov Decision Processes
نویسندگان
چکیده
We consider risk minimization problems for Markov decision processes. From a standpoint of making the risk of random reward variable at each time as small as possible, a risk measure is introduced using conditional value-at-risk for random immediate reward variables in Markov decision processes, under whose risk measure criteria the risk-optimal policies are characterized by the optimality equations for the discounted or average case. As an application, the inventory models are considered.
منابع مشابه
Financial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملConditional Value-at-Risk Minimization in Finite State Markov Decision Processes: Continuity and Compactness
This study is concerned with the dynamic risk-analysis for finite state Markov decision processes. As a measure of risk, we consider conditional value-at-risk(CVaR) for the real value of the discounted total reward from a policy, under whose criterion risk optimal or deterministic policies are defined. The risk problem is equivalently redefined as a non-linear optimization problem on the attain...
متن کاملADK Entropy and ADK Entropy Rate in Irreducible- Aperiodic Markov Chain and Gaussian Processes
In this paper, the two parameter ADK entropy, as a generalized of Re'nyi entropy, is considered and some properties of it, are investigated. We will see that the ADK entropy for continuous random variables is invariant under a location and is not invariant under a scale transformation of the random variable. Furthermore, the joint ADK entropy, conditional ADK entropy, and chain rule of this ent...
متن کاملEffect of Reward Function Choices in MDPs with Value-at-Risk
This paper studies Value-at-Risk problems in finite-horizon Markov decision processes (MDPs) with finite state space and two forms of reward function. Firstly we study the effect of reward function on two criteria in a short-horizon MDP. Secondly, for long-horizon MDPs, we estimate the total reward distribution in a finite-horizon Markov chain (MC) with the help of spectral theory and the centr...
متن کاملThree steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American J. Computational Mathematics
دوره 1 شماره
صفحات -
تاریخ انتشار 2011